
International Journal of Computer Science & Emerging Technologies (IJCSET) 100

Volume 1 Issue 2, August 2010

Survey on Multimedia Operating Systems

P. DharanyaDevi, S. Poonguzhali, T. Sathiya, G.Yamini, P. Sujatha and V. Narasimhulu

Department of Computer Science, Pondicherry Central University,

Pondicherry - 605014, India.

{spothula, narasimhavasi}@gmail.com

Abstract: Real-time applications such as multimedia audio and

video are increasingly populating the workstation desktop. A

growing number of multimedia applications are available,

ranging from video games and movie players, to sophisticated

distributed simulation and virtual reality environment.

Multimedia is an increasingly important part of the mix of

applications that users run on personal computers and workstations.

Research in operating system support for multimedia has

traditionally been evaluated using metrics such as fairness, the

ability to permit applications to meet real-time deadlines, and run-

time efficiency. In addition, the support for real-time applications

is integrated with the support for conventional computations.

This poster deals with the survey on multimedia operating systems,

its process scheduling, disk management, file management and

device management techniques.

Keywords: Multimedia Operating Systems, CPU Scheduling,

Memory Management, Device Management, File Management.

1. Introduction

Multimedia data demands strict time constraints for

processing. In any multimedia application, we may have

several processes running dependently on one another [12].

For example, one process may generate video frames for an

X-window process while another process generates an audio

stream for an attached speaker system. These two processes

must execute in parallel for the application to be of any

worth. In other words, the processes require relative progress

to one another. It is of no use to begin executing the audio

process once the video is half finished. Certain media

processes may require absolute time progress as well. For

example, the video application should process frames at a

constant rate with respect to world time. If steady absolute

progress is not enforced, one would observe random

stopping and starting of the video. If relative progress is not

enforced, cooperating processes such as the audio and video

application mentioned earlier will not function properly.

 Multimedia can be classified as live-data applications or

stored-data applications. Live-data is much harder to process

effectively because there can be little or no data buffering to

ensure consistent output. For live-data, displaying audio and

video as it happens reduces the amount of slack time allowed

for computation and resource scheduling. Live-data is simply

more demanding in its temporal deadlines than stored

multimedia data. Stored-data can be retrieved in bulk well in

advance of output deadlines. This ensures data will be

available most of the time for processing when required [27].

 Personal computers running Windows XP, MacOS X,

and Linux are capable of performing a variety of multimedia

tasks accurately recognizing continuous speech, encoding

captured television signals and storing them on disk, acting

as professional-quality electronic musical instruments, and

rendering convincing virtual worlds all in real time[5].

Furthermore, personal computers costing less than $1000 are

capable of performing several of these tasks at once if the

operating system manages resources well [21] [22]. The

increasing pervasiveness of multimedia applications, and

problems supporting them on traditional systems, has

motivated many research papers over the past decade.

 In this paper, in section 2 we illustrate some features of

multimedia OS, section 3 describes CPU scheduling

techniques, section 4 describes memory management,

section 5 describes device management, section 6 describes

file management, section 7 describes disk scheduling

algorithms and finally section 8 describes the conclusion of

the paper.

2. Multimedia Requirements

A general-purpose operating system (GPOS) for a personal

computer or workstation must provide fast response time for

interactive applications, high throughput for batch

applications, and some amount of fairness between

applications [10] [13]. Although there is tension between

these requirements the lack of meaningful changes to the

design of time-sharing schedulers in recent years indicates

that they are working well enough. The goal of a hard real-

time system is similarly unambiguous: all hard deadlines

must be met. The standard engineering practice for building

these systems is to statically determine resource

requirements and schedulability, as well as over-

provisioning resources as a hedge against unforeseen

situations.

 We have identified four basic requirements that the

―ideal‖ multimedia operating system should meet [23].

Although it is unlikely that any single system or scheduling

policy will be able to meet all of these requirements for all

types of applications, the requirements are important because

they describe the space within which multimedia systems are

designed. A particular set of prioritizations among the

requirements will result in a specific set of tradeoffs; these

tradeoffs will constrain the design of the user interface and

the application programming model.

 1. Meet the scheduling requirements of coexisting,

independently written, possibly misbehaving soft real time

applications: The CPU requirements of a real-time

application are often specified in terms of an amount and

period; here the application must receive the amount of CPU

time during each period of time. No matter how scheduling

requirements are specified, the scheduler must be able to

International Journal of Computer Science & Emerging Technologies (IJCSET) 101

Volume 1 Issue 2, August 2010

meet them without the benefit of global coordination among

application developers multimedia operating systems are

open systems in the sense that applications are written

independently [6].

 2. Minimize development effort by providing abstractions

and guarantees that are a good match for applications

requirements: In the past, personal computers were

dedicated to a single application at a time. Developers did

not need to interact much with OS resource allocation

policies. This is no longer the case. For example, it is

possible to listen to music while playing a game, burn a CD

while watching a movie, or encode video from a capture card

while using speech recognition software. Therefore, an

important role of the designers of soft real-time systems is to

make it as easy as possible for developers to create

applications that gracefully share machine resources with

other applications [6].

 3. Provide a consistent, intuitive user interface: Users

should be able to easily express their preferences to the

system and the system should behave predictably in response

to user actions. Also, it should give the user (or software

operating on the user‘s behalf) feedback about the resource

usage of existing applications and, when applicable, the

likely effects of future actions [6].

 4. Run a mix of applications that maximizes overall

value: Unlike hard real-time systems, PCs and workstations

cannot overprovision the CPU resource; demanding

multimedia applications tend to use all available cycles.

During overload the multimedia OS should run a mix of

applications that maximizes overall value. This is the ―holy

grail‖ of resource management and is probably impossible in

practice since value is a subjective measure of the utility of

an application, running at a particular time, to a particular

user. Still, this requirement is a useful one since it provides a

basis for evaluating different systems [6].

3. CPU Scheduling

 3.1 Fixed-Time Allocation

By giving real -time computation, a higher priority than

system and other user processes, it limits the utilization of

the system and artificially constrains the range of behavior

the system can provide. Priority real -time execution can

cause system services to lock up, and the user can lose

control over the machine.

 Real -time processes are allocated the CPU first. They are

allowed to execute for a fixed amount of time. If some

processes are not able to meet their deadline within the fixed

amount of time allocated, the process is notified it will miss

its deadline. The process may abort or continue executing,

depending on the application [8]. Conventional processes are

then allocated a fixed amount of CPU time. The cycle

continues, alternating between conventional and real -time

execution.

 The amount of time allocated for real -time and

conventional computation depends on the workload ratio. A

good solution when the real -time deadlines can be met

within the fixed time allocated. In this case the scheduler

provides adequate service for all classes of computation.

 3.2 Rate-Based Priority Scheduling

It is also called rate-based adjustable priority scheduling

(RAP). The algorithm makes three assumptions about the

real -time processes it schedules [8].

1. RAP does not assume a priori knowledge of resource

requirements by MM applications.

2. RAP assumes multimedia applications can tolerate

occasional delays in execution.

3. RAP assumes MM applications are adaptive in nature

and can gracefully adapt to resource overloads by

modifying their behavior to reduce their resource

requirements.

 At the beginning of execution, an application specifies a

desired average rate of execution and a time interval over

which the average rate of execution will be measured. RAP

implements an admission control scheme that calculates the

available CPU capacity and compares it to the requested

execution rate. If an acceptable execution rate can be

allocated, then the process is placed in the set of runnable

processes. The queue of real -time processes is organized on

a priority basis. Each process priority is based on the

requested rate of execution. It is not clear how the priority

relates to the rate of execution.

 Once a process is admitted to the set of runnable

processes, the scheduler allocates the CPU using a priority-

based scheduler and a rate regulator. The rate regulator

ensures a process which was promised an average execution

rate R does not execute more than R times a second and

executes roughly once every T=1/R time interval. After a

process executes for the duration of one averaging interval,

feedback is provided back to the application about the

observed rate of progress [2]. The quality-of-service

manager assumed to be implemented in the application

reacts accordingly. It may increase or decreased its desired

rate of execution. RAP also has a mechanism that monitors

CPU capacity. If the CPU is over or under-utilized, it can

communicate with application level processes to decrease or

increase its resource demands by a fraction of its current

demand, respectively.

 This algorithm provides a good basis for future work in

system and application layer cooperation. As opposed to

some of the other scheduling techniques described which

were entirely system or application based, this scheduler is

effectively implemented at both the application and

operating system level. Communication and cooperation of

the two levels help establish a fair and adaptable scheduling

discipline.

 3.3 Earliest Deadline First

When the scheduler is in real -time mode, the processes are

scheduled in an earliest deadline first scheme. Conventional

processes are allocated in a round-robin discipline. The

Earliest Deadline first scheduling is theoretically optimal

under certain assumptions. Soft real time OS uses EDF as an

internal scheduler. Only a few systems such as Rialto and

SMART expose deadline-based scheduling abstractions to

application programmers. Both systems couple deadline-

International Journal of Computer Science & Emerging Technologies (IJCSET) 102

Volume 1 Issue 2, August 2010

based scheduling with an admission test and call the

resulting abstraction a time constraint.

 Time constraints present a fairly difficult programming

model because they require fine-grained effort: the

developer must decide which pieces of code to execute

within the context of a time constraint in addition to

providing the deadline and an estimate of the required

processing time. Applications must also be prepared to skip

part of their processing if the admission test fails. Once a

time constraint is accepted, Rialto guarantees the application

that it will receive the required CPU time. SMART, on the

other hand, will sometimes deliver an up call to applications

informing them that a deadline previously thought to be

feasible has become infeasible, forcing the program to take

appropriate action [8].

 3.4 Feedback-Based Scheduling

Multimedia OS need to work in situations where total load is

difficult to predict and execution times of individual

applications vary considerably. To address these problems

new approaches based on feedback control have been

developed. Feedback control concepts can be applied at

admission control and/or as the scheduling algorithm itself.

In the FC-EDF work [1] a feedback controller is used to

dynamically adjust CPU utilization in such a manner as to

meet a specific set point stated as a deadline miss percentage.

FC-EDF is not designed to prevent individual applications

from missing their deadlines; rather, it aims for high

utilization and low overall deadline miss ratio.

 SWiFT uses a feedback mechanism to estimate the

amount of CPU time to reserve for applications that are

structured as pipelines. The scheduler monitors the status of

buffer queues between stages of the pipeline; it attempts to

keep queues half full by adjusting the amount of processor

time that each stage receives. Both SWiFT and FC-EDF

have the advantage of not requiring estimates of the amount

of processing time that applications will need. Both systems

require periodic monitoring of the metric that the feedback

controller acts on.

 3.5 Hierarchical Scheduling

Hierarchical schedulers generalize the traditional role of

schedulers by allowing them to allocate CPU time to other

schedulers. The root scheduler gives CPU time to a

scheduler below it in the hierarchy and so on until a leaf of

the scheduling tree. The scheduling hierarchy may either be

fixed at system build time or dynamically constructed at run

time. CPU inheritance scheduling [3] probably represents an

endpoint on the static vs. dynamic axis: it allows arbitrary

user-level threads to act as schedulers by donating the CPU

to other threads.

 Hierarchical scheduling has two important properties.

First, it permits multiple programming models to be

supported simultaneously, potentially enabling support for

applications with diverse requirements. Second, it allows

properties that schedulers usually provide to threads to be

recursively applied to groups of threads [7].

 The comparison of fixed –time allocation, rate-based

priority and hierarchical scheduling is given in Table1.

Table 1. Comparison of scheduling algorithms

Features
Fixed – Time

Allocation

Rate-Based

Priority

Scheduling

Hierarchical

Scheduling

Nature of

Allocation
Static Dynamic

Dynamic

Priori

knowledge of

needed

resources

Required Required Not Required

Scheduling

Mechanism

Earliest Deadline

First,

Round Robin

Priority Based Not specific

Admission

Control Used
No Yes No

Monitors Used No
Rate Regulator.

QoS Manager
No

Efficiency Average
Good

Best

Support Hard

and Soft real-

time

No No Yes

 3.6 CPU Schedulers

In the following subsections, we describe in more detail two

distinct schedulers.

3.6.1 Rialto scheduler

 The scheduler of the Rialto OS is based on three

fundamental abstractions:

 Activities are typically an executing program or

application that comprises multiple threads of control.

Resources are allocated to activities and their usage is

charged to activities.

 CPU reservations are made by activities and are

requested in the form: ―reserve x units of time out of

every Y units for activity A‖. Basically, period length

and reservations for each period can be of arbitrary

length.

 Time constraints are dynamic requests from threads to

the scheduler to run a certain code segment within a

specified start time and deadline to completion.

 The scheduling decision [6], i.e. which threads to activate

next, is based on a pre-computed scheduling graph. Each

time a request for CPU reservation is issued, this scheduling

graph is recomputed. In this scheduling graph, each node

represents an activity with a CPU reservation, specified as

time interval and period, or represents free computation time.

 For each base period, i.e. the lowest common

denominator of periods from all CPU reservations, the

scheduler traverses the tree in a depth-first manner, but back

tracks always to the root after visiting a leaf in the tree. Each

node, i.e. activity that is crossed during the traversal, is

scheduled for the specified amount of time.

 The execution time associated with the schedule graph is

fixed. Free execution times are available for non-time-

critical tasks. This fixed schedule graph keeps the number of

context switches low and keeps the scheduling algorithm

scalable. If threads request time constraints, the scheduler

analyzes their feasibility with the so-called time interval

assignment data structure. This data structure is based on the

International Journal of Computer Science & Emerging Technologies (IJCSET) 103

Volume 1 Issue 2, August 2010

knowledge represented in the schedule graph and checks

whether enough free computation time is available between

start time and deadline (including the already reserved time

in the CPU reserve).

 Threads are not allowed to define time constraints when

they might block—except for short blocking intervals for

synchronization or I/O. When during the course of a

scheduling graph traversal an interval assignment record for

the current time is encountered, a thread with an active time

constraint is selected according to EDF [6]. Otherwise,

threads of an activity are scheduled according to round-

robin. Free time for non-time-critical tasks is also distributed

according to round-robin. If threads with time constraints

block on a synchronization event, the thread priority (and its

reservations) is passed to the holding thread.

3.6.2 SMART scheduler

The SMART scheduler [6] is designed for multimedia

applications and is implemented in Solaris 2.5.1. The main

idea of SMART is to differentiate between importance to

determine the overall resource allocation for each task and

urgency to determine when each task is given its allocation.

Importance is valid for real-time and conventional tasks and

is specified in the system by a tuple of priority and biased

virtual finishing time.

 Here, the virtual finishing time [4], as known from fair-

queuing schemes, is extended with a bias, which is a

bounded offset measuring the ability of conventional tasks to

tolerate longer and more varied service delays. Application

developers can specify time constraints, i.e. deadlines and

execution times, for a particular block of code, and they can

use the system notification.

 The system notification is an up call that informs the

application that a deadline cannot be met and allows the

application to adapt to the situation. Applications can query

the scheduler for availability, which is an estimate of

processor time consumption of an application relative to its

processor allocation. Users of applications can specify

priority and share to bias the allocation of resources for the

different applications.

 The SMART scheduler separates importance and urgency

considerations. First, it identifies all tasks that are important

enough to execute and collects them in a candidate set.

Afterwards, it orders the candidate set according to urgency

consideration.

 In more detail, the scheduler works as follows [26]: if the

tasks with the highest value-tuple are a conventional task,

schedule it. The highest value-tuple is either determined by

the highest priority or for equal priorities by the earliest

biased virtual finishing time. If the task with the highest

value-tuple is a real-time task, it creates a candidate set of all

real-time tasks that have a higher value tuple than the highest

conventional task. The candidate set is scheduled according

to the so-called best-effort real-time scheduling algorithm.

 Basically, this algorithm finds the task with the earliest

deadline that can be executed without violating deadlines of

tasks with higher value-tuples. SMART notifies applications

if their computation cannot be completed before its deadline.

This enables applications to implement downscaling. There

is no admission control implemented in SMART. Thus,

SMART can only enforce real-time behavior in underload

situations.

 3.6.3 EScheduler

EScheduler, an energy-efficient soft real-time CPU

scheduler [6] for multimedia applications running on a

mobile device. EScheduler seeks to minimize the total

energy consumed by the device while meeting multimedia

timing requirements. To achieve this goal, EScheduler

integrates dynamic voltage scaling into the traditional soft

real-time CPU scheduling: It decides at what CPU speed to

execute applications in addition to when to execute what

applications. EScheduler makes these scheduling decisions

based on the probability distribution of cycle demand of

multimedia applications and obtains their demand

distribution via online profiling.

(a) Advantages of EScheduler

1. Scheduling is stable. This stability implies the

feasibility to perform our proposed energy-efficient

scheduling with low overhead.

2. EScheduler delivers soft performance guarantees to

these codecs by bounding their deadline miss ratio

under the application-specific performance

requirements.

3. EScheduler reduces the total energy of the laptop by

14.4 percent; to 37.2 percent; relative to the

scheduling algorithm without voltage scaling and by 2

percent; to 10.5 percent; relative to voltage scaling

algorithms without considering the demand

distribution.

4. EScheduler saves energy by 2 percent; to 5 percent;

by explicitly considering the discrete CPU speeds and

the corresponding total power of the whole laptop,

rather than assuming continuous speeds and cubic

speed-power relationship.

Table 2. Comparison of CPU schedulers

 The comparison of CPU schedulers in terms of features is

given in Table2.

4. Memory Management

Techniques such as demand-paging and memory-mapped

files have been successfully used in commodity OS.

However, these techniques fail to support multimedia

applications, because they introduce unpredictable memory

Features SMART Rialto EScheduler

Platform Solaris 2.5.1 Not specific Mobile device

Time

constraints
Dynamic Dynamic Static

Scheduling

mechanism

Based on

Virtual

finishing time

Recomputed

graph

Dynamic

voltage

scaling

Admission

Control
No No No

Support for

Hard real time

application

No No Yes

Scheduling

Algorithm

Best-effort real-

time
Hierarchical

Proportional

share

International Journal of Computer Science & Emerging Technologies (IJCSET) 104

Volume 1 Issue 2, August 2010

access times, cause poor resource utilization, and reduce

performance. In the following subsections, we present new

approaches for memory allocation and utilization, data

replacement, and prefetching using application-specific

knowledge to solve these problems. Furthermore, we give a

brief description of the UVM Virtual Memory System that

replaces the traditional virtual memory system in NetBSD

1.4. [5]

 4.1 Memory Allocation

Usually, upon process creation, a virtual address space is

allocated which contains the data of the process. Physical

memory [20] is then allocated and assigned to a process and

then mapped into the virtual address space of the process

according to available resources and a global or local

allocation scheme. This approach is also called user-centered

allocation [6]. Each process has its own share of the

resources. However, traditional memory allocation on a per

client (process) basis suffers from a linear increase of

required memory with the number of processes. In order to

better utilize the available memory, several systems use so-

called data-centered allocation where memory is allocated to

data objects rather than to a single process. Thus, the data is

seen as a resource principal. This enables more cost-effective

data-sharing techniques [16] [18]:

 (1) Batching starts the video transmission when several

clients request the same movie and allows several clients to

share the same data stream;

 (2) Buffering (or bridging) caches data between

consecutive clients omitting new disk requests for the same

data.

 (3) Stream merging (or adaptive piggy-backing) displays

the same video clip at different speeds to allow clients to

catch up with each other and then share the same stream.

 (4) Content insertion is a variation of stream merging, but

rather than adjusting the display rate, new content, e.g.

commercials, is inserted to align the consecutive playouts

temporally;

 (5) Periodic services (or enhanced pay-per-view) assign

each clip a retrieval period where several clients can start at

the beginning of each period to view the same movie and to

share resources.

 These data-sharing techniques are used in several

systems. All buffers are shared among the clients watching

the same movie and work like a sliding window on the

continuous data [14]. When the first client has consumed

nearly all the data in the buffer, it starts to refresh the oldest

buffers with new data. Periodic services are used in pyramid

broadcasting .The data is split in partitions of growing size,

because the consumption rate of one partition is assumed to

be lower than the downloading rate of the subsequent

partition. Each partition is then broadcast in short intervals

on separate channels.

 A client does not send a request to the server, but instead

it tunes into the channel transmitting the required data. The

data is cached on the receiver side, and during the playout of

a partition, the next partition is downloaded. However, to

avoid very large partitions at the end of a movie and thus to

reduce the client buffer requirement, the partitioning is

changed such that not every partition increases in size, but

only each nth partition. Performance evaluations show that

the data-centered allocation schemes scale much better with

the numbers of users compared to user-centered allocation.

The total buffer space required is reduced, and the average

response time is minimized by using a small partition size at

the beginning of a movie.

 The memory reservation per storage device mechanism

allocates a fixed, small number of memory buffers per

storage device in a server-push VoD server using a cycle

based scheduler. [19] In the simplest case, only two buffers

of identical size are allocated per storage device. These

buffers work co-operatively, and during each cycle, the

buffers change task as data is received from disk. That is,

data from one process is read into the first buffer, and when

all the data is loaded into the buffer, the system starts to

transmit the information to the client. At the same time, the

disk starts to load data from the next client into the other

buffer. In this way, the buffers change task from receiving

disk data to transmitting data to the network until all clients

are served. The admission control adjusts the number of

concurrent users to prevent data loss when the buffers switch

and ensures the maintenance of all client services [24].

 4.2 Data Replacement

When there is need for more buffer space, and there are no

available buffers, a buffer has to be replaced. How to best

choose which buffer to replace depends on the application.

However, due to the high data consumption rate in

multimedia applications, data is often replaced before it

might be reused. The gain of using a complex page

replacement algorithm might be wasted and a traditional

algorithm as. Nevertheless, in some multimedia applications

where data often might be reused, proper replacement

algorithms may increase performance. The distance, the

generalized interval caching and the SHR schemes, all

replace buffers after the distance between consecutive clients

playing back the same data and the amount of available

buffers [6].

 Usually, data replacement is handled by the OS kernel

where most applications use the same mechanism. Thus, the

OS has full control, but the used mechanism is often tuned to

best overall performance and does not support application

specific requirements.

 Self-paging has been introduced as a technique to

provide QoS to multimedia applications. The basic idea of

self-paging is to ―require every application to deal with all its

own memory faults using its own concrete resources‖. All

paging operations are removed from the kernel where the

kernel is only responsible for dispatching fault notifications.

This gives the application flexibility and control, which

might be needed in multimedia systems, at the cost of

maintaining its own virtual memory operations. However, a

major problem of self-paging is to optimize the global

system performance. Allocating resources directly to

applications gives them more control, but that means

optimizations for global performance improvement are not

directly achieved.

International Journal of Computer Science & Emerging Technologies (IJCSET) 105

Volume 1 Issue 2, August 2010

 4.3 Prefetching

The poor performance of demand-paging is due to the low

disk access speeds. Therefore, prefetching data from disk to

memory is better suited to support continuous playback of

time-dependent data types. Prefetching is a mechanism to

preload data from slow, high-latency storage devices such as

disks to fast, low-latency storage like main memory [6]. This

reduces the response time of a data read request dramatically

and increases the disk I/O bandwidth.

 Prefetching mechanisms in multimedia systems can take

advantage of the sequential characteristics of multimedia

presentations. For example, a read-ahead mechanism

retrieves data before it is requested if the system determines

that the accesses are sequential. The utilization of buffers

and disk is optimized by prefetching all the shortest database

queries maximizing the number of processes that can be

activated once the running process is finished. Assuming a

linear playout of the continuous data stream, the data needed

in the next period (determined by a tradeoff between the

maximum concurrent streams and the initial delay) is

prefetched into a shared buffer [15].

 In addition to the above- mentioned prefetching

mechanisms designed for multimedia applications, more

general purpose facilities for retrieving data in advance are

designed which also could be used for certain multimedia

applications.

 The informed prefetching and caching strategy preloads

a certain amount of data where the buffers are allocated /

deallocated according to a global max–min valuation. This

mechanism is further developed. Where the automatic hint

generation, based on speculative pre-executions using mid-

execution process states, is used to prefetch data for possible

future read requests.

 Moreover, the dependent-based prefetching captures

the access patterns of linked data structures. A prefetch

engine runs in parallel with the original program using these

patterns to predict future data references. Finally, an analytic

approach to file prefetching is described. During the

execution of a process a semantic data structure is built

showing the file accesses. When a program is re-executed,

the saved access trees are compared against the current

access tree of the activity, and if a similarity is found, the

stored tree is used to preload files.

 Obviously, knowledge (or estimations) about application

behavior might be used for both replacement and

prefetching. A multimedia object is replaced and prefetched

according to its relevance value computed according to the

presentation point/modus of the data playout.

 4.4 Cache Management

All real-time applications rely on predictable scheduling, but

the memory cache design makes it hard to forecast and

schedule the processor time. Furthermore, memory

bandwidth and the general OS performance have not

increased at the same rate as CPU performance.

Benchmarked performance can be improved by enlarging

and speeding up static RAM-based cache memory, but the

large amount of multimedia data that has to be handled by

CPU and memory system will likely decrease cache hit ratios

[6]. If two processes use the same cache lines and are

executed concurrently, there will not only be an increase in

context switch overheads, but also a cache-interference cost

that is more difficult to predict. Thus, the system

performance may be dominated by slower main memory and

I/O accesses. Furthermore, the busier a system is, the more

likely it is that involuntary context switches occur; longer

run queues must be searched by the scheduler, etc. flushing

the caches even more frequently.

 UVM virtual memory system: The UVM Virtual Memory

System replaces the virtual memory object, fault handling,

and pager of the BSD virtual memory system; and retains

only the machine dependent/independent layering and

mapping structures [6]. For example, the memory mapping is

redesigned to increase efficiency and security; and the map

entry fragmentation is reduced by memory wiring.

 In BSD, the memory object structure is a stand-alone

abstraction and under control of the virtual memory system.

In UVM, the memory object structure is considered as a

secondary structure designed to be embedded with a handle

for memory mapping resulting in better efficiency, more

flexibility, and less conflicts with external kernel

subsystems. The new copy-on-write mechanism avoids

unnecessary page allocations and data copying, and grouping

or clustering the allocation and use of resources improves

performance. Finally, a virtual memory-based data

movement mechanism is introduced which allows data

sharing with other subsystems, i.e. when combined with the

I/O or IPC systems; it can reduce the data copying overhead

in the kernel.

 4.5 Management of other resources

This section takes a brief look at management aspects of OS

resources.

 4.5.1 Speed Improvements in Memory Access

The term dynamic RAM (DRAM), coined to indicate that

any random access in memory takes the same amount of

time, is slightly misleading. Most modern DRAMs provide

special capabilities that make it possible to perform some

accesses faster than others [5]. For example, consecutive

accesses to the same row in a page mode memory are faster

than random accesses, and consecutive accesses that hit

different memory banks in a multi-bank system allow

concurrency and are thus faster than accesses that hit the

same bank.

 The key point is that the order of the requests strongly

affects the performance of the memory devices. The most

common method to reduce latency is to increase the cache

line size, i.e. using the memory bandwidth to fill several

cache locations at the same time for each access.

 However, if the stream has a non-unit-stride (stride is the

distance between successive stream elements in memory),

i.e. the presentation of successive data elements does not

follow each other in memory, and the cache will load data

which will not be used. Thus, lengthening the cache line size

increases the effective bandwidth of unit-stride streams, but

decreases the cache hit rate for non-streamed accesses.

Another way of improving memory bandwidth in memory-

cache data transfers for streamed access patterns

International Journal of Computer Science & Emerging Technologies (IJCSET) 106

Volume 1 Issue 2, August 2010

 4.5.2 Multimedia mbuf

The multimedia mbuf (mmbuf) is specially designed for disk-

to-network data transfers [6]. It provides a zero-copy data

path for networked multimedia applications by unifying the

buffering structure in file I/O and network I/O. This buffer

system looks like a collection of clustered mbufs that can be

dynamically allocated and chained. The mmbuf header

includes references to mbuf header and buffer cache header.

By manipulating the mmbuf header, the mmbuf can be

transformed either into a traditional buffer, that a file system

and a disk driver can handle, or an mbuf, which the network

protocols and network drivers can understand.

 A new interface is provided to retrieve and send data,

which coexist with the old file system interface. The old

buffer cache is bypassed by reading data from a file into an

mmbuf chain. Both synchronous (blocking) and

asynchronous (non-blocking) operations are supported and

read and send requests for multiple streams can be bunched

together in a single call minimizing system call overhead. At

setup time, each stream allocates a ring of buffers, each of

which is an mmbuf chain.

5. Device Management

 A device management system for supporting applications

that reside on a multimedia client, the applications

interacting with a plurality of stream devices associated with

the multimedia client, comprising: a stream manager being

configured to identify the plurality of stream devices and

store a device identifier for each of said stream devices [6].

 The first application being operative to initiate

communication between a first stream device and said first

application by sending a device identifier to said stream

manager, said device identifier indicative of said first stream

device; and said stream manager being operative, in response

to receiving a device identifier from said first application, to

stream data between said first application and said first

stream device [6].

 A stream device management system is provided for

supporting applications that access a variety of stream

devices associated with a conventional set-top box. More

specifically, the stream device management system includes

a stream manager configured to identify a plurality of stream

devices and to store a device identifier for each of these

stream devices, and a shared memory for storing stream data

associated with each of the stream devices.

 To initiate communication with a first stream device, a

first application sends a device identifier indicative of the

first stream device to the stream manager. In response to

receiving the device identifier, the stream manager

communicates an address for the shared memory associated

with the first stream device to the first application. Lastly,

the application uses this address to access the stream data.

6. File System

 The file system plays a major role in every operating

system. In multimedia operating system the file system

stores the files with following issues [17]: (1) physical

storage device (2) contiguous storage of files that improves

the throughput at expense of management issues. (3)The disk

scheduling to reduce the seek operation and fair disk [11].

 For the multimedia disk scheduling the traditional disk

scheduling approaches the substituted by EDF, SCAN-EDF,

group-sweeping scheduling, mixed strategy, and continuous

media file system. A life span of file system is longer than

the execution of the program. The integration of discrete and

continuous data needs additional resources. The time

requirement is very important in multimedia applications.

Thus disk scheduling techniques pay major role providing

multimedia data [9].

 6.1. Multimedia File System

Due to the need of immense storage and continuous media

requirements the traditional tape drives are not feasible to

store multimedia data [25]. But storage devices such as CD-

ROM, RW-CDROM are used. The continuous media of

multimedia system is differing from discrete data in the

following conditions [11]:

 Real time characteristics: The retrieval, computation and

presentation time of continuous media are time independent.

 File size: compared to text and graphics, video and audio

have very large storage space requirements. Since the file

system has to store information ranging from small

unstructured units like text files to large, highly structured

data units like video and associated audio, it has to organize

the data on disk in a way that efficiently uses the limited

storage.

 Multiple data streams: a multimedia system has to

support different media at the same time. It not only has to

ensure that each medium gets a sufficient share of the

resources, but it also has to consider the tight relationships

between different streams arriving from different sources.

The retrieval of a movie, for example, requires the

processing and synchronization of audio and video.

7. Disk Scheduling Algorithms

The overall goal of disk scheduling in multimedia systems is

to meet the deadlines of all time-critical tasks. The goal of

keeping the necessary buffer space requirements low is

loosely related. As many streams as possible should be

served concurrently, but aperiodic requests should also be

schedulable without delaying their service for an infinite

amount of time. The scheduling algorithm has to find a

balance between time constraints and efficiency [19].

 7.1 Earliest Deadline First

This algorithm is used in CPU scheduling and also it is used

in disk scheduling. In this algorithm at every new ready

state, the scheduler selects from the tasks that are ready and

not fully processed the one with the earliest deadline. The

requested resource is assigned to the selected task. At the

arrival of any new task, EDF must be computed

immediately, heading to a new order, i.e. the running task is

preempted and the new task is scheduled according to its

deadline. The new task is processed immediately if its

deadline is earlier than that of the interrupted task. The

processing of the interrupted task is continued according to

the EDF algorithm later on. EDF is not only an algorithm for

International Journal of Computer Science & Emerging Technologies (IJCSET) 107

Volume 1 Issue 2, August 2010

periodic tasks, but also for tasks with arbitrary requests,

deadlines and service execution times[19].In file systems the

block of the stream with the nearest deadline would be read

first. This results in poor throughput and an excessive seek

time; no buffer space is optimized. Further, as EDF is

usually applied as a preemptive scheduling scheme, the costs

for preemption of a task and scheduling of another task are

considerable.

 7.2 SCAN-Earliest Deadline First Algorithm

The SCAN-EDF is the combination of SCAN and EDF

mechanism. The nearest seek time will be read first [24]. If

there is more than read with same seek time, it will be read

based on SCAN direction. This optimization can be applied

to the reads with same seek time. When there is more than

one reads with same deadline, they are grouped on the basis

of their finish time. Buffer space is not optimized. The

throughput is larger than EDF.

 7.3 Group Sweeping Scheduling

With Group Sweeping scheduling, requests are served in

cycle or in round robin manner. To reduce the disk arm

movements, a set of n streams is divided into g groups.

Individual streams are within a group are served according to

scan technology. There is no fixed time to serve the streams.

If the SCAN scheduling is applied to the streams without

grouping the playout of a stream cannot be until the previous

stream finish its payload. As the buffers can be reused for

each group the playout of each stream starts at end where the

first retrieval takes place.

 7.4 Mixed strategy

The mixed strategy is based on the shortest seek and the

balanced strategy [25].The data retrieved from the disk is

transferred to the buffer allocated for the respective data

stream. In this algorithm the data block which is closest is

served first. The employment of shortest seek follows two

criteria (1) the number of buffers for all the processes should

be balanced and (2) overall require bandwidth should be

sufficient to all active processes.

 7.5 Continuous Media File System

The Continuous Disk Scheduling is a non preemptive

scheduling scheme designed for the continuous media file

system. The notion of slack time is introduced here. The

slack time is the time duration for which the CMFS is free to

do non real time operations.

Table 3: Comparison of the disk scheduling techniques

8. Conclusion

This article gives an overview of the OS support for

multimedia applications. This is an active area, and a lot of

valuable research results have been published. Thus, we

have not discussed or cited all recent results, but tried to

identify the major approaches and to present at least one

representative for each. The various currently available CPU

scheduling mechanisms, along with specialized CPU

schedulers are discussed.

 The memory management techniques along with VoD

memory model give an overview of the memory

management in Multimedia operating systems. The device

management techniques are briefed. We have also discussed

the various file management techniques available. The

various disk scheduling algorithms like EDF, SCAN-EDF,

Group Sweeping, mixed strategy and continuous Media file

system are also discussed along with their comparisons.

References

[1] C. Lu, J. A. Stankovic, G. Tav, and S. H. Son. ―The

design and evaluation of a feedback control EDF

scheduling algorithm,‖ In proc of the 20th IEEE real

time systems symp., Dec 1999.

[2] D. C. Steere, A. Goel, J. Gruenburg, D. McNamee, C.

Pu, and J. Walpole, ―A feedback-driven proportion

allocator for real rate scheduling,‖ In proc of the 3rd

symp on operating systems design and implementation ,

new Orleans, LA, Feb1999.

[3] B. Ford and S. Susarla, ―CPU inheritance scheduling,‖ In

proc of the 2nd symp on operating systems design and

implementation, Oct 1996.

[4] K. J. Duda and D. C. Chriton, ―Borrowed- virtual time

scheduling supporting latency – sensitive threads in a

general purpose scheduler,‖ In proc of the 17th ACM

symp on operating systems principles, Kiawah Island,

Dec 1999.

[5] T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus.

―Operating system support for multimedia systems,‖

Computer Communications, 23 (2006), 267–289.

[6] T. Plagemann, V. Goebel, P. Halvorsen, O. Anshus.

―Operating system support for multimedia systems,‖

Computer Communications 23 (2000) 267–289.

[7] Pawan Goyal, Xingang Guo, and Harrick M. Vin. ―A

Hierarchical CPU Scheduler for Multimedia Operating

Systems,‖ Proceedings of the second USENIX

symposium on Operating systems design and

implementation, pp: 107-121, 1996.

[8] Daniel Alexander Taranovsky, ―CPU Scheduling in

Multimedia Operating Systems,‖Research Report, 1999.

[9] Gifford, D W and O‘Toole, J W ‗Intelligent file systems

for object repositories‘, Operating Systems of the 90s

and Beyond, Int. Workshop, Dagstuhl Castle, Germany

(2007), 20-24.

[10] P. A. Janson, ―Operating Systems, Structures and

Mechanisms,‖ Academic Press, Orlando, FL

Properties
Real time

processing
Throughput Seek time Buffer

EDF Yes Poor Excessive No optimization

SCAN-EDF Yes Higher Minimum No optimization

GSW Yes Higher Minimum No optimization

Mixed

Strategy

Yes Maximum Minimum Optimization of

buffer

CMFS No Maximum Minimum Optimization

International Journal of Computer Science & Emerging Technologies (IJCSET) 108

Volume 1 Issue 2, August 2010

Tanenbaum, A S Operating System, Design and

Implementation. Prentice-Hall, 2008.

[11] Cliffs Englewood, S. J. Mullender, ‗Systems of the

nineties-Distributed multimedia systems; systems of

the 90s and beyond‘, Int. Workshop, 1999.

[12] Castle Dagstuhl, R. Steinmetz, ―Data compression in

multimedia computing: principles and techniques,‖

Multimedia Systems, Vol 1 No 4, pp 166-172.

[13] R. Steinmetz, ―Data compression in multimedia

computing: standards and systems,‖ Multimedia

Systems, Vol 1 No 5, 1994.

[14] Lougher, P and Shepherd, D ‗The design of a storage

service for continuous media‘, The Computer J, Vol 36

No 1, pp 32-42, 1993.

[15] J. Gemmell, and S. Christodoulakis, ―Principles of delay

sensitive multimedia data storage and retrieval,‖ ACM

Trans. Infor. Syst., Vol IO No 1, January 1992.

[16] Rangan, P V, Klppner, T and Vin, H W, ‗Techniques

for efficient storage of digital video and audio‘, Proc.

Workshop on Multimedia Information Systems, Tempe,

AZ , February 2002.

 [17] P. V. Rangan, and H. M. Vin, ―Designing file systems

for digital video and audio,‖ Proc. 13th ACM

Symposium on Operating Systems Principles, Monterey

CA Operating Systems Review, Vol25 No 5, Oct., 1991.

[18] P. V. Rangan, and H. M. Vin, ―Techniques for efficient

storage of digital video and audio,‖ Comput. Commun.,

Vol 16, pp 168-176, 2003.

[19] A. Karmouch, Wang, and Yea, ―Design and Analysis of

a Storage Retrieval Model for Audio and Video Data,‖

Technical Report, Multimedia Information Systems,

Department of Electrical Engineering, University of

Ottawa, Canada, 1994.

[20] M. L. Dertouzos, ―Control robotics,‖ The Procedural

Control of Physical Processing. Information Processing

74, North Holland, pp 807-813.

[21] S. Krakowiak, ―Principles of Operating Systems,‖ MIT

Press, Cambridge, MA, 2008.

[22] J. Peterson, and A. Silberschatz, ―Operating System

Concepts,‖ Addison-Wesley, Reading, MA, 1983.

[23] R. Steinmetz, and K. Nahrstedt, ―The Fundamentals in

Multimedia Systems,‖ Prentice-Hall, Englewood

Cliffs, NJ, February 1995.

[24] Y. N. Doganata, and A. Tantawy, ―A cost/performance

study of video servers with hierarchical storage,‖ IEEE

Proc. Int. Conf. Multimedia Computing and Systems,

Boston, MA , 2005.

[25] Ralf Steinmetz, ―multimedia file systems: approaches

for continuous media disk scheduling,‖ computer

communications, volume 18, number 3, 1995.

[26] Sity Jason Neih and Monica S. Lam, ―Computer

Systems Laboratory,‖ Stanford University,

implementation and Evaluation of SMART:A

Scheduler for Multimedia Applications.

[27] T. D. C. Little, and A. Ghafoor. ―Scheduling of

Bandwidth-Constrained Multimedia Traffic,‖ Second

International Workshop, November 1991.

